
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 8: Relational Database Design

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan8.2Database System Concepts - 6th Edition

Chapter 8: Relational Database Design

Features of Good Relational Design

Atomic Domains and First Normal Form

Decomposition Using Functional Dependencies

Functional Dependency Theory

Algorithms for Functional Dependencies

Decomposition Using Multivalued Dependencies

More Normal Form

Database-Design Process

Modeling Temporal Data

©Silberschatz, Korth and Sudarshan8.3Database System Concepts - 6th Edition

Combine Schemas?

Suppose we combine instructor and department into inst_dept

(No connection to relationship set inst_dept)

Result is possible repetition of information

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 6th Edition

A Combined Schema Without Repetition

Consider combining relations

sec_class(sec_id, building, room_number) and

section(course_id, sec_id, semester, year)

into one relation

section(course_id, sec_id, semester, year,

building, room_number)

No repetition in this case

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 6th Edition

What About Smaller Schemas?

Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?

Write a rule “if there were a schema (dept_name, building, budget), then

dept_name would be a candidate key”

Denote as a functional dependency:

dept_name → building, budget

In inst_dept, because dept_name is not a candidate key, the building

and budget of a department may have to be repeated.

This indicates the need to decompose inst_dept

Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

The next slide shows how we lose information -- we cannot reconstruct

the original employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 6th Edition

A Lossy Decomposition

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 6th Edition

Example of Lossless-Join Decomposition

Lossless join decomposition

Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)

A B

1

2

A

B

1

2

r B,C(r)

A (r) B (r)
A B

1

2

C

A

B

B

1

2

C

A

B

C

A

B

A,B(r)

©Silberschatz, Korth and Sudarshan8.8Database System Concepts - 6th Edition

First Normal Form

Domain is atomic if its elements are considered to be indivisible units

Examples of non-atomic domains:

 Set of names, composite attributes

 Identification numbers like CS101 that can be broken up into

parts

A relational schema R is in first normal form if the domains of all

attributes of R are atomic

Non-atomic values complicate storage and encourage redundant

(repeated) storage of data

Example: Set of accounts stored with each customer, and set of

owners stored with each account

We assume all relations are in first normal form (and revisit this in

Chapter 22: Object Based Databases)

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 6th Edition

First Normal Form (Cont’d)

Atomicity is actually a property of how the elements of the domain are

used.

Example: Strings would normally be considered indivisible

Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127

If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.

Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 6th Edition

Goal — Devise a Theory for the Following

Decide whether a particular relation R is in “good” form.

In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that

each relation is in good form

the decomposition is a lossless-join decomposition

Our theory is based on:

functional dependencies

multivalued dependencies

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 6th Edition

Functional Dependencies

Constraints on the set of legal relations.

Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.

A functional dependency is a generalization of the notion of a key.

©Silberschatz, Korth and Sudarshan8.12Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

Let R be a relation schema

 R and R

The functional dependency

 →
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

t1[] = t2 [] t1[] = t2 []

Example: Consider r(A,B) with the following instance of r.

On this instance, A → B does NOT hold, but B → A does hold.

1 4

1 5

3 7

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

K is a superkey for relation schema R if and only if K → R

K is a candidate key for R if and only if

K → R, and

for no K, → R

Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name→ building

and ID → building

but would not expect the following to hold:

dept_name → salary

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 6th Edition

Use of Functional Dependencies

We use functional dependencies to:

test relations to see if they are legal under a given set of functional

dependencies.

 If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.

specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set

of functional dependencies F.

Note: A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on all legal

instances.

For example, a specific instance of instructor may, by chance, satisfy

name → ID.

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 6th Edition

Functional Dependencies (Cont.)

A functional dependency is trivial if it is satisfied by all instances of a

relation

Example:

 ID, name → ID

 name → name

In general, → is trivial if

©Silberschatz, Korth and Sudarshan8.16Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

For example: If A → B and B → C, then we can infer that A →

C

The set of all functional dependencies logically implied by F is the

closure of F.

We denote the closure of F by F+.

F+ is a superset of F.

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 6th Edition

Boyce-Codd Normal Form

 → is trivial (i.e.,)

 is a superkey for R

A relation schema R is in BCNF with respect to a set F of

functional dependencies if for all functional dependencies in F+ of

the form

 →

where R and R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name→ building, budget

holds on instr_dept, but dept_name is not a superkey

©Silberschatz, Korth and Sudarshan8.18Database System Concepts - 6th Edition

Decomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency →
causes a violation of BCNF.

We decompose R into:

• (U)

• (R - (-))

In our example,

 = dept_name

 = building, budget

and inst_dept is replaced by

(U) = (dept_name, building, budget)

(R - (-)) = (ID, name, salary, dept_name)

©Silberschatz, Korth and Sudarshan8.19Database System Concepts - 6th Edition

BCNF and Dependency Preservation

Constraints, including functional dependencies, are costly to check in

practice unless they pertain to only one relation

If it is sufficient to test only those dependencies on each individual

relation of a decomposition in order to ensure that all functional

dependencies hold, then that decomposition is dependency

preserving.

Because it is not always possible to achieve both BCNF and

dependency preservation, we consider a weaker normal form, known

as third normal form.

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 6th Edition

Third Normal Form

A relation schema R is in third normal form (3NF) if for all:

 → in F+

at least one of the following holds:

 → is trivial (i.e.,)

 is a superkey for R

Each attribute A in – is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).

Third condition is a minimal relaxation of BCNF to ensure dependency

preservation (will see why later).

©Silberschatz, Korth and Sudarshan8.21Database System Concepts - 6th Edition

Goals of Normalization

Let R be a relation scheme with a set F of functional dependencies.

Decide whether a relation scheme R is in “good” form.

In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn} such that

each relation scheme is in good form

the decomposition is a lossless-join decomposition

Preferably, the decomposition should be dependency preserving.

©Silberschatz, Korth and Sudarshan8.22Database System Concepts - 6th Edition

How good is BCNF?

There are database schemas in BCNF that do not seem to be

sufficiently normalized

Consider a relation

inst_info (ID, child_name, phone)

where an instructor may have more than one phone and can have

multiple children

ID child_name phone

99999

99999

99999

99999

David

David

William

Willian

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_info

©Silberschatz, Korth and Sudarshan8.23Database System Concepts - 6th Edition

There are no non-trivial functional dependencies and therefore the

relation is in BCNF

Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999,

we need to add two tuples

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

©Silberschatz, Korth and Sudarshan8.24Database System Concepts - 6th Edition

Therefore, it is better to decompose inst_info into:

This suggests the need for higher normal forms, such as Fourth

Normal Form (4NF), which we shall see later.

How good is BCNF? (Cont.)

ID child_name

99999

99999

99999

99999

David

David

William

Willian

inst_child

ID phone

99999

99999

99999

99999

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_phone

©Silberschatz, Korth and Sudarshan8.25Database System Concepts - 6th Edition

Functional-Dependency Theory

We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional

dependencies.

We then develop algorithms to generate lossless decompositions into

BCNF and 3NF

We then develop algorithms to test if a decomposition is dependency-

preserving

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

Given a set F set of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

For e.g.: If A → B and B → C, then we can infer that A → C

The set of all functional dependencies logically implied by F is the

closure of F.

We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan8.27Database System Concepts - 6th Edition

Closure of a Set of Functional

Dependencies

We can find F+, the closure of F, by repeatedly applying

Armstrong’s Axioms:

if , then → (reflexivity)

if → , then → (augmentation)

if → , and → , then → (transitivity)

These rules are

sound (generate only functional dependencies that actually hold),

and

complete (generate all functional dependencies that hold).

©Silberschatz, Korth and Sudarshan8.28Database System Concepts - 6th Edition

Example

R = (A, B, C, G, H, I)

F = { A → B

A → C

CG → H

CG → I

B → H}

some members of F+

A → H

 by transitivity from A → B and B → H

AG → I

 by augmenting A → C with G, to get AG → CG

and then transitivity with CG → I

CG → HI

 by augmenting CG → I to infer CG → CGI,

and augmenting of CG → H to infer CGI → HI,

and then transitivity

©Silberschatz, Korth and Sudarshan8.29Database System Concepts - 6th Edition

Procedure for Computing F+

To compute the closure of a set of functional dependencies F:

F + = F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +

until F + does not change any further

NOTE: We shall see an alternative procedure for this task later

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 6th Edition

Closure of Functional Dependencies

(Cont.)

Additional rules:

If → holds and → holds, then → holds (union)

If → holds, then → holds and → holds

(decomposition)

If → holds and → holds, then → holds

(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

©Silberschatz, Korth and Sudarshan8.31Database System Concepts - 6th Edition

Closure of Attribute Sets

Given a set of attributes , define the closure of under F (denoted

by +) as the set of attributes that are functionally determined by

under F

Algorithm to compute +, the closure of under F

result := ;

while (changes to result) do

for each → in F do

begin

if result then result := result

end

©Silberschatz, Korth and Sudarshan8.32Database System Concepts - 6th Edition

Example of Attribute Set Closure

R = (A, B, C, G, H, I)

F = {A → B
A → C
CG → H
CG → I
B → H}

(AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG AGBC)

4. result = ABCGHI (CG → I and CG AGBCH)

Is AG a candidate key?

1. Is AG a super key?

1. Does AG → R? == Is (AG)+ R

2. Is any subset of AG a superkey?

1. Does A → R? == Is (A)+ R

2. Does G → R? == Is (G)+ R

©Silberschatz, Korth and Sudarshan8.33Database System Concepts - 6th Edition

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

Testing for superkey:

To test if is a superkey, we compute +, and check if + contains

all attributes of R.

Testing functional dependencies

To check if a functional dependency → holds (or, in other

words, is in F+), just check if +.

That is, we compute + by using attribute closure, and then check

if it contains .

Is a simple and cheap test, and very useful

Computing closure of F

For each R, we find the closure +, and for each S +, we

output a functional dependency → S.

©Silberschatz, Korth and Sudarshan8.34Database System Concepts - 6th Edition

Canonical Cover

Sets of functional dependencies may have redundant dependencies

that can be inferred from the others

For example: A → C is redundant in: {A → B, B → C, A→ C}

Parts of a functional dependency may be redundant

 E.g.: on RHS: {A → B, B → C, A → CD} can be simplified

to

{A → B, B → C, A → D}

 E.g.: on LHS: {A → B, B → C, AC → D} can be simplified

to

{A → B, B → C, A → D}

Intuitively, a canonical cover of F is a “minimal” set of functional

dependencies equivalent to F, having no redundant dependencies or

redundant parts of dependencies

©Silberschatz, Korth and Sudarshan8.35Database System Concepts - 6th Edition

Extraneous Attributes

Consider a set F of functional dependencies and the functional

dependency → in F.

Attribute A is extraneous in if A

and F logically implies (F – { → }) {(– A) → }.

Attribute A is extraneous in if A

and the set of functional dependencies

(F – { → }) { →(– A)} logically implies F.

Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always

implies a weaker one

Example: Given F = {A → C, AB → C }

B is extraneous in AB → C because {A → C, AB → C} logically

implies A → C (I.e. the result of dropping B from AB → C).

Example: Given F = {A → C, AB → CD}

C is extraneous in AB → CD since AB → C can be inferred even

after deleting C

©Silberschatz, Korth and Sudarshan8.36Database System Concepts - 6th Edition

Testing if an Attribute is Extraneous

Consider a set F of functional dependencies and the functional

dependency → in F.

To test if attribute A is extraneous in

1. compute ({} – A)+ using the dependencies in F

2. check that ({} – A)+ contains ; if it does, A is extraneous in

To test if attribute A is extraneous in

1. compute + using only the dependencies in

F’ = (F – { → }) { →(– A)},

2. check that + contains A; if it does, A is extraneous in

©Silberschatz, Korth and Sudarshan8.37Database System Concepts - 6th Edition

Canonical Cover

A canonical cover for F is a set of dependencies Fc such that

F logically implies all dependencies in Fc, and

Fc logically implies all dependencies in F, and

No functional dependency in Fc contains an extraneous attribute, and

Each left side of functional dependency in Fc is unique.

To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
1 → 1 and 1 → 2 with 1 → 1 2

Find a functional dependency → with an
extraneous attribute either in or in
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from →
until F does not change

Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan8.38Database System Concepts - 6th Edition

Computing a Canonical Cover

R = (A, B, C)

F = {A → BC

B → C

A → B

AB → C}

Combine A → BC and A → B into A → BC

Set is now {A → BC, B → C, AB → C}

A is extraneous in AB → C

Check if the result of deleting A from AB → C is implied by the other

dependencies

 Yes: in fact, B → C is already present!

Set is now {A → BC, B → C}

C is extraneous in A → BC

Check if A → C is logically implied by A → B and the other dependencies

 Yes: using transitivity on A → B and B → C.

– Can use attribute closure of A in more complex cases

The canonical cover is: A → B

B → C

©Silberschatz, Korth and Sudarshan8.39Database System Concepts - 6th Edition

Lossless-join Decomposition

For the case of R = (R1, R2), we require that for all possible relations r

on schema R

r = R1 (r) R2 (r)

A decomposition of R into R1 and R2 is lossless join if at least one of

the following dependencies is in F+:

R1 R2 → R1

R1 R2 → R2

The above functional dependencies are a sufficient condition for

lossless join decomposition; the dependencies are a necessary

condition only if all constraints are functional dependencies

©Silberschatz, Korth and Sudarshan8.40Database System Concepts - 6th Edition

Example

R = (A, B, C)

F = {A → B, B → C)

Can be decomposed in two different ways

R1 = (A, B), R2 = (B, C)

Lossless-join decomposition:

R1 R2 = {B} and B → BC

Dependency preserving

R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:

R1 R2 = {A} and A → AB

Not dependency preserving

(cannot check B → C without computing R1 R2)

©Silberschatz, Korth and Sudarshan8.41Database System Concepts - 6th Edition

Dependency Preservation

Let Fi be the set of dependencies F + that include only attributes in

Ri.

 A decomposition is dependency preserving, if

(F1 F2 … Fn)
+ = F +

 If it is not, then checking updates for violation of functional

dependencies may require computing joins, which is

expensive.

©Silberschatz, Korth and Sudarshan8.42Database System Concepts - 6th Edition

Testing for Dependency Preservation

To check if a dependency → is preserved in a decomposition

of R into R1, R2, …, Rn we apply the following test (with attribute

closure done with respect to F)

result =

while (changes to result) do

for each Ri in the decomposition

t = (result Ri)
+ Ri

result = result t

If result contains all attributes in , then the functional

dependency

 → is preserved.

We apply the test on all dependencies in F to check if a

decomposition is dependency preserving

This procedure takes polynomial time, instead of the exponential

time required to compute F+ and (F1 F2 … Fn)
+

©Silberschatz, Korth and Sudarshan8.43Database System Concepts - 6th Edition

Example

R = (A, B, C)

F = {A → B

B → C}

Key = {A}

R is not in BCNF

Decomposition R1 = (A, B), R2 = (B, C)

R1 and R2 in BCNF

Lossless-join decomposition

Dependency preserving

©Silberschatz, Korth and Sudarshan8.44Database System Concepts - 6th Edition

Testing for BCNF

To check if a non-trivial dependency → causes a violation of BCNF

1. compute + (the attribute closure of), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

Simplified test: To check if a relation schema R is in BCNF, it suffices
to check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.

If none of the dependencies in F causes a violation of BCNF, then
none of the dependencies in F+ will cause a violation of BCNF
either.

However, simplified test using only F is incorrect when testing a
relation in a decomposition of R

Consider R = (A, B, C, D, E), with F = { A → B, BC → D}

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)

 Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies

BCNF.

 In fact, dependency AC → D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan8.45Database System Concepts - 6th Edition

Testing Decomposition for BCNF

To check if a relation Ri in a decomposition of R is in BCNF,

Either test Ri for BCNF with respect to the restriction of F to Ri

(that is, all FDs in F+ that contain only attributes from Ri)

or use the original set of dependencies F that hold on R, but with

the following test:

– for every set of attributes Ri, check that + (the

attribute closure of) either includes no attribute of Ri- ,

or includes all attributes of Ri.

 If the condition is violated by some → in F, the

dependency

 → (+ -) Ri

can be shown to hold on Ri, and Ri violates BCNF.

 We use above dependency to decompose Ri

©Silberschatz, Korth and Sudarshan8.46Database System Concepts - 6th Edition

BCNF Decomposition Algorithm

result := {R };

done := false;

compute F +;

while (not done) do

if (there is a schema Ri in result that is not in BCNF)

then begin

let → be a nontrivial functional dependency that

holds on Ri such that → Ri is not in F +,

and = ;

result := (result – Ri) (Ri –) (,);

end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan8.47Database System Concepts - 6th Edition

Example of BCNF Decomposition

R = (A, B, C)

F = {A → B

B → C}

Key = {A}

R is not in BCNF (B → C but B is not superkey)

Decomposition

R1 = (B, C)

R2 = (A,B)

©Silberschatz, Korth and Sudarshan8.48Database System Concepts - 6th Edition

Example of BCNF Decomposition

class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

Functional dependencies:

course_id→ title, dept_name, credits

building, room_number→capacity

course_id, sec_id, semester, year→building, room_number,
time_slot_id

A candidate key {course_id, sec_id, semester, year}.

BCNF Decomposition:

course_id→ title, dept_name, credits holds

 but course_id is not a superkey.

We replace class by:

 course(course_id, title, dept_name, credits)

 class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan8.49Database System Concepts - 6th Edition

BCNF Decomposition (Cont.)

course is in BCNF

How do we know this?

building, room_number→capacity holds on class-1

but {building, room_number} is not a superkey for class-1.

We replace class-1 by:

 classroom (building, room_number, capacity)

 section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)

classroom and section are in BCNF.

©Silberschatz, Korth and Sudarshan8.50Database System Concepts - 6th Edition

BCNF and Dependency Preservation

R = (J, K, L)

F = {JK → L

L → K }

Two candidate keys = JK and JL

R is not in BCNF

Any decomposition of R will fail to preserve

JK → L

This implies that testing for JK → L requires a join

It is not always possible to get a BCNF decomposition that is

dependency preserving

©Silberschatz, Korth and Sudarshan8.51Database System Concepts - 6th Edition

Third Normal Form: Motivation

There are some situations where

BCNF is not dependency preserving, and

efficient checking for FD violation on updates is important

Solution: define a weaker normal form, called Third

Normal Form (3NF)

Allows some redundancy (with resultant problems; we will

see examples later)

But functional dependencies can be checked on individual

relations without computing a join.

There is always a lossless-join, dependency-preserving

decomposition into 3NF.

©Silberschatz, Korth and Sudarshan8.52Database System Concepts - 6th Edition

3NF Example

Relation dept_advisor:

dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name → i_ID, i_ID → dept_name}

Two candidate keys: s_ID, dept_name, and i_ID, s_ID

R is in 3NF

 s_ID, dept_name → i_ID s_ID

– dept_name is a superkey

 i_ID → dept_name

– dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan8.53Database System Concepts - 6th Edition

Redundancy in 3NF

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

repetition of information (e.g., the relationship l1, k1)

⚫ (i_ID, dept_name)

need to use null values (e.g., to represent the relationship

l2, k2 where there is no corresponding value for J).

⚫ (i_ID, dept_nameI) if there is no separate relation mapping

instructors to departments

There is some redundancy in this schema

Example of problems due to redundancy in 3NF

R = (J, K, L)

F = {JK → L, L → K }

©Silberschatz, Korth and Sudarshan8.54Database System Concepts - 6th Edition

Testing for 3NF

Optimization: Need to check only FDs in F, need not check all FDs in

F+.

Use attribute closure to check for each dependency → , if is a

superkey.

If is not a superkey, we have to verify if each attribute in is

contained in a candidate key of R

this test is rather more expensive, since it involve finding

candidate keys

testing for 3NF has been shown to be NP-hard

Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time

©Silberschatz, Korth and Sudarshan8.55Database System Concepts - 6th Edition

3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency → in Fc do
if none of the schemas Rj, 1 j i contains

then begin
i := i + 1;
Ri :=

end
if none of the schemas Rj, 1 j i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
/* Optionally, remove redundant relations */

repeat
if any schema Rj is contained in another schema Rk

then /* delete Rj */
Rj = R;;
i=i-1;

return (R1, R2, ..., Ri)

©Silberschatz, Korth and Sudarshan8.56Database System Concepts - 6th Edition

3NF Decomposition Algorithm (Cont.)

Above algorithm ensures:

each relation schema Ri is in 3NF

decomposition is dependency preserving and lossless-join

Proof of correctness is at end of this presentation (click here)

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan8.57Database System Concepts - 6th Edition

3NF Decomposition: An Example

Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type)

The functional dependencies for this relation schema are:

1. customer_id, employee_id → branch_name, type

2. employee_id → branch_name

3. customer_id, branch_name → employee_id

We first compute a canonical cover

branch_name is extraneous in the r.h.s. of the 1st dependency

No other attribute is extraneous, so we get FC =

customer_id, employee_id → type

employee_id → branch_name

customer_id, branch_name → employee_id

©Silberschatz, Korth and Sudarshan8.58Database System Concepts - 6th Edition

3NF Decompsition Example (Cont.)

The for loop generates following 3NF schema:

(customer_id, employee_id, type)

(employee_id, branch_name)

(customer_id, branch_name, employee_id)

Observe that (customer_id, employee_id, type) contains a
candidate key of the original schema, so no further relation schema
needs be added

At end of for loop, detect and delete schemas, such as (employee_id,

branch_name), which are subsets of other schemas

result will not depend on the order in which FDs are considered

The resultant simplified 3NF schema is:

(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)

©Silberschatz, Korth and Sudarshan8.59Database System Concepts - 6th Edition

Comparison of BCNF and 3NF

It is always possible to decompose a relation into a set of relations

that are in 3NF such that:

the decomposition is lossless

the dependencies are preserved

It is always possible to decompose a relation into a set of relations

that are in BCNF such that:

the decomposition is lossless

it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan8.60Database System Concepts - 6th Edition

Design Goals

Goal for a relational database design is:

BCNF.

Lossless join.

Dependency preservation.

If we cannot achieve this, we accept one of

Lack of dependency preservation

Redundancy due to use of 3NF

Interestingly, SQL does not provide a direct way of specifying functional

dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test, (and

currently not supported by any of the widely used databases!)

Even if we had a dependency preserving decomposition, using SQL we

would not be able to efficiently test a functional dependency whose left

hand side is not a key.

©Silberschatz, Korth and Sudarshan8.61Database System Concepts - 6th Edition

Multivalued Dependencies

Suppose we record names of children, and phone numbers for

instructors:

inst_child(ID, child_name)

inst_phone(ID, phone_number)

If we were to combine these schemas to get

inst_info(ID, child_name, phone_number)

Example data:

(99999, David, 512-555-1234)

(99999, David, 512-555-4321)

(99999, William, 512-555-1234)

(99999, William, 512-555-4321)

This relation is in BCNF

Why?

©Silberschatz, Korth and Sudarshan8.62Database System Concepts - 6th Edition

Multivalued Dependencies (MVDs)

Let R be a relation schema and let R and R. The

multivalued dependency

 →→

holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2
in r such that t1[] = t2 [], there exist tuples t3 and t4 in r such that:

t1[] = t2 [] = t3 [] = t4 []

t3[] = t1 []

t3[R –] = t2[R –]

t4 [] = t2[]

t4[R –] = t1[R –]

©Silberschatz, Korth and Sudarshan8.63Database System Concepts - 6th Edition

MVD (Cont.)

Tabular representation of →→

©Silberschatz, Korth and Sudarshan8.64Database System Concepts - 6th Edition

Example

Let R be a relation schema with a set of attributes that are partitioned

into 3 nonempty subsets.

Y, Z, W

We say that Y →→ Z (Y multidetermines Z)

if and only if for all possible relations r (R)

< y1, z1, w1 > r and < y1, z2, w2 > r

then

< y1, z1, w2 > r and < y1, z2, w1 > r

Note that since the behavior of Z and W are identical it follows that

Y →→ Z if Y →→ W

©Silberschatz, Korth and Sudarshan8.65Database System Concepts - 6th Edition

Example (Cont.)

In our example:

ID →→ child_name

ID →→ phone_number

The above formal definition is supposed to formalize the notion that given

a particular value of Y (ID) it has associated with it a set of values of Z

(child_name) and a set of values of W (phone_number), and these two

sets are in some sense independent of each other.

Note:

If Y → Z then Y →→ Z

Indeed we have (in above notation) Z1 = Z2

The claim follows.

©Silberschatz, Korth and Sudarshan8.66Database System Concepts - 6th Edition

Use of Multivalued Dependencies

We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall

thus concern ourselves only with relations that satisfy a given

set of functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we can

construct a relations r that does satisfy the multivalued

dependency by adding tuples to r.

©Silberschatz, Korth and Sudarshan8.67Database System Concepts - 6th Edition

Theory of MVDs

From the definition of multivalued dependency, we can derive the

following rule:

If → , then →→

That is, every functional dependency is also a multivalued dependency

The closure D+ of D is the set of all functional and multivalued

dependencies logically implied by D.

We can compute D+ from D, using the formal definitions of

functional dependencies and multivalued dependencies.

We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice

For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules (see Appendix C).

©Silberschatz, Korth and Sudarshan8.68Database System Concepts - 6th Edition

Fourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and

multivalued dependencies if for all multivalued dependencies in D+ of

the form →→ , where R and R, at least one of the following

hold:

 →→ is trivial (i.e., or = R)

 is a superkey for schema R

If a relation is in 4NF it is in BCNF

©Silberschatz, Korth and Sudarshan8.69Database System Concepts - 6th Edition

Restriction of Multivalued Dependencies

The restriction of D to Ri is the set Di consisting of

All functional dependencies in D+ that include only attributes of Ri

All multivalued dependencies of the form

 →→ (Ri)

where Ri and →→ is in D+

©Silberschatz, Korth and Sudarshan8.70Database System Concepts - 6th Edition

4NF Decomposition Algorithm

result: = {R};

done := false;

compute D+;

Let Di denote the restriction of D+ to Ri

while (not done)

if (there is a schema Ri in result that is not in 4NF) then

begin

let →→ be a nontrivial multivalued dependency that holds

on Ri such that → Ri is not in Di, and =;

result := (result - Ri) (Ri -) (,);

end

else done:= true;

Note: each Ri is in 4NF, and decomposition is lossless-join

©Silberschatz, Korth and Sudarshan8.71Database System Concepts - 6th Edition

Example

R =(A, B, C, G, H, I)

F ={ A →→ B

B →→ HI

CG →→ H }

R is not in 4NF since A →→ B and A is not a superkey for R

Decomposition

a) R1 = (A, B) (R1 is in 4NF)

b) R2 = (A, C, G, H, I) (R2 is not in 4NF, decompose into R3 and R4)

c) R3 = (C, G, H) (R3 is in 4NF)

d) R4 = (A, C, G, I) (R4 is not in 4NF, decompose into R5 and R6)

A →→ B and B →→ HI ➔ A →→ HI, (MVD transitivity), and

and hence A →→ I (MVD restriction to R4)

e) R5 = (A, I) (R5 is in 4NF)

f)R6 = (A, C, G) (R6 is in 4NF)

©Silberschatz, Korth and Sudarshan8.72Database System Concepts - 6th Edition

Further Normal Forms

Join dependencies generalize multivalued dependencies

lead to project-join normal form (PJNF) (also called fifth normal

form)

A class of even more general constraints, leads to a normal form

called domain-key normal form.

Problem with these generalized constraints: are hard to reason with,

and no set of sound and complete set of inference rules exists.

Hence rarely used

©Silberschatz, Korth and Sudarshan8.73Database System Concepts - 6th Edition

Overall Database Design Process

We have assumed schema R is given

R could have been generated when converting E-R diagram to a set

of tables.

R could have been a single relation containing all attributes that are

of interest (called universal relation).

Normalization breaks R into smaller relations.

R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.

©Silberschatz, Korth and Sudarshan8.74Database System Concepts - 6th Edition

ER Model and Normalization

When an E-R diagram is carefully designed, identifying all entities

correctly, the tables generated from the E-R diagram should not need

further normalization.

However, in a real (imperfect) design, there can be functional

dependencies from non-key attributes of an entity to other attributes of

the entity

Example: an employee entity with attributes

department_name and building,

and a functional dependency

department_name→ building

Good design would have made department an entity

Functional dependencies from non-key attributes of a relationship set

possible, but rare --- most relationships are binary

©Silberschatz, Korth and Sudarshan8.75Database System Concepts - 6th Edition

Denormalization for Performance

May want to use non-normalized schema for performance

For example, displaying prereqs along with course_id, and title requires

join of course with prereq

Alternative 1: Use denormalized relation containing attributes of course

as well as prereq with all above attributes

faster lookup

extra space and extra execution time for updates

extra coding work for programmer and possibility of error in extra code

Alternative 2: use a materialized view defined as

course prereq

Benefits and drawbacks same as above, except no extra coding work

for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan8.76Database System Concepts - 6th Edition

Other Design Issues

Some aspects of database design are not caught by normalization

Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use

earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).

 Above are in BCNF, but make querying across years difficult and

needs new table each year

company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)

 Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.

 Is an example of a crosstab, where values for one attribute

become column names

 Used in spreadsheets, and in data analysis tools

©Silberschatz, Korth and Sudarshan8.77Database System Concepts - 6th Edition

Modeling Temporal Data

Temporal data have an association time interval during which the
data are valid.

A snapshot is the value of the data at a particular point in time

Several proposals to extend ER model by adding valid time to

attributes, e.g., address of an instructor at different points in time

entities, e.g., time duration when a student entity exists

relationships, e.g., time during which an instructor was associated
with a student as an advisor.

But no accepted standard

Adding a temporal component results in functional dependencies like

ID → street, city

not to hold, because the address varies over time

A temporal functional dependency X → Y holds on schema R if the
functional dependency X → Y holds on all snapshots for all legal
instances r (R).

t

©Silberschatz, Korth and Sudarshan8.78Database System Concepts - 6th Edition

Modeling Temporal Data (Cont.)

In practice, database designers may add start and end time attributes

to relations

E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)

 Constraint: no two tuples can have overlapping valid times

– Hard to enforce efficiently

Foreign key references may be to current version of data, or to data at

a point in time

E.g., student transcript should refer to course information at the

time the course was taken

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Proof of Correctness of 3NF

Decomposition Algorithm

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan8.81Database System Concepts - 6th Edition

Correctness of 3NF Decomposition

Algorithm

3NF decomposition algorithm is dependency preserving (since there

is a relation for every FD in Fc)

Decomposition is lossless

A candidate key (C) is in one of the relations Ri in decomposition

Closure of candidate key under Fc must contain all attributes in

R.

Follow the steps of attribute closure algorithm to show there is

only one tuple in the join result for each tuple in Ri

©Silberschatz, Korth and Sudarshan8.82Database System Concepts - 6th Edition

Correctness of 3NF Decomposition

Algorithm (Cont’d.)

Claim: if a relation Ri is in the decomposition generated by the

above algorithm, then Ri satisfies 3NF.

Let Ri be generated from the dependency →

Let → B be any non-trivial functional dependency on Ri. (We need only

consider FDs whose right-hand side is a single attribute.)

Now, B can be in either or but not in both. Consider each case

separately.

©Silberschatz, Korth and Sudarshan8.83Database System Concepts - 6th Edition

Correctness of 3NF Decomposition

(Cont’d.)

Case 1: If B in :

If is a superkey, the 2nd condition of 3NF is satisfied

Otherwise must contain some attribute not in

Since → B is in F+ it must be derivable from Fc, by using attribute

closure on .

Attribute closure not have used →. If it had been used, must

be contained in the attribute closure of , which is not possible, since

we assumed is not a superkey.

Now, using → (- {B}) and → B, we can derive →B

(since , and B since → B is non-trivial)

Then, B is extraneous in the right-hand side of →; which is not

possible since → is in Fc.

Thus, if B is in then must be a superkey, and the second

condition of 3NF must be satisfied.

©Silberschatz, Korth and Sudarshan8.84Database System Concepts - 6th Edition

Correctness of 3NF Decomposition

(Cont’d.)

Case 2: B is in .

Since is a candidate key, the third alternative in the definition of

3NF is trivially satisfied.

In fact, we cannot show that is a superkey.

This shows exactly why the third alternative is present in the

definition of 3NF.

Q.E.D.

©Silberschatz, Korth and Sudarshan8.85Database System Concepts - 6th Edition

Figure 8.02

©Silberschatz, Korth and Sudarshan8.86Database System Concepts - 6th Edition

Figure 8.03

©Silberschatz, Korth and Sudarshan8.87Database System Concepts - 6th Edition

Figure 8.04

©Silberschatz, Korth and Sudarshan8.88Database System Concepts - 6th Edition

Figure 8.05

©Silberschatz, Korth and Sudarshan8.89Database System Concepts - 6th Edition

Figure 8.06

©Silberschatz, Korth and Sudarshan8.90Database System Concepts - 6th Edition

Figure 8.14

©Silberschatz, Korth and Sudarshan8.91Database System Concepts - 6th Edition

Figure 8.15

©Silberschatz, Korth and Sudarshan8.92Database System Concepts - 6th Edition

Figure 8.17

