
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 5: Advanced SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 6th Edition

Chapter 5: Advanced SQL

Accessing SQL From a Programming Language

Dynamic SQL

 JDBC and ODBC

Embedded SQL

SQL Data Types and Schemas

Functions and Procedural Constructs

Triggers

Advanced Aggregation Features

OLAP

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 6th Edition

JDBC and ODBC

API (application-program interface) for a program to interact

with a database server

Application makes calls to

Connect with the database server

Send SQL commands to the database server

Fetch tuples of result one-by-one into program variables

ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic

Other API’s such as ADO.NET sit on top of ODBC

JDBC (Java Database Connectivity) works with Java

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 6th Edition

JDBC

JDBC is a Java API for communicating with database systems

supporting SQL.

JDBC supports a variety of features for querying and updating

data, and for retrieving query results.

JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

Model for communicating with the database:

Open a connection

Create a “statement” object

Execute queries using the Statement object to send queries

and fetch results

Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 6th Edition

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {

Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement();

… Do Actual Work ….

stmt.close();

conn.close();

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);

}

}

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 6th Edition

JDBC Code (Cont.)

Update to database

try {

stmt.executeUpdate(

"insert into instructor values(’77987’, ’Kim’, ’Physics’, 98000)");

} catch (SQLException sqle)

{

System.out.println("Could not insert tuple. " + sqle);

}

Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(

"select dept_name, avg (salary)

from instructor

group by dept_name");

while (rset.next()) {

System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));

}

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 6th Edition

JDBC Code Details

Getting result fields:

rs.getString(“dept_name”) and rs.getString(1)

equivalent if dept_name is the first argument of select

result.

Dealing with Null values

int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 6th Edition

Prepared Statement

PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance"); pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

For queries, use pStmt.executeQuery(), which returns a ResultSet

WARNING: always use prepared statements when taking an input

from the user and adding it to a query

NEVER create a query by concatenating strings which you

get as inputs

"insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +

" ’ + dept name + " ’, " ’ balance + ")“

What if name is “D’Souza”?

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 6th Edition

SQL Injection

Suppose query is constructed using

"select * from instructor where name = ’" + name + "’"

Suppose the user, instead of entering a name, enters:

X’ or ’Y’ = ’Y

then the resulting statement becomes:

"select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

which is:

select * from instructor where name = ’X’ or ’Y’ = ’Y’

User could have even used

X’; update instructor set salary = salary + 10000; --

Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

Always use prepared statements, with user inputs as
parameters

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 6th Edition

Metadata Features

ResultSet metadata

E.g., after executing query to get a ResultSet rs:

ResultSetMetaData rsmd = rs.getMetaData();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

How is this useful?

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 6th Edition

Metadata (Cont)

Database metadata

DatabaseMetaData dbmd = conn.getMetaData();

ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

// and Column-Pattern

// Returns: One row for each column; row has a number of attributes

// such as COLUMN_NAME, TYPE_NAME

while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),

rs.getString("TYPE_NAME");

}

And where is this useful?

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 6th Edition

Transaction Control in JDBC

By default, each SQL statement is treated as a separate

transaction that is committed automatically

bad idea for transactions with multiple updates

Can turn off automatic commit on a connection

conn.setAutoCommit(false);

Transactions must then be committed or rolled back explicitly

conn.commit(); or

conn.rollback();

conn.setAutoCommit(true) turns on automatic commit.

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 6th Edition

Other JDBC Features

Calling functions and procedures

CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");

CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");

Handling large object types

getBlob() and getClob() that are similar to the getString()

method, but return objects of type Blob and Clob, respectively

get data from these objects by getBytes()

associate an open stream with Java Blob or Clob object to

update large objects

blob.setBlob(int parameterIndex, InputStream inputStream).

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 6th Edition

SQLJ

JDBC is overly dynamic, errors cannot be caught by compiler

SQLJ: embedded SQL in Java

#sql iterator deptInfoIter (String dept name, int avgSal);

deptInfoIter iter = null;

#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };

while (iter.next()) {

String deptName = iter.dept_name();

int avgSal = iter.avgSal();

System.out.println(deptName + " " + avgSal);

}

iter.close();

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 6th Edition

ODBC

Open DataBase Connectivity(ODBC) standard

standard for application program to communicate with a

database server.

application program interface (API) to

open a connection with a database,

 send queries and updates,

get back results.

Applications such as GUI, spreadsheets, etc. can use ODBC

Was defined originally for Basic and C, versions available for

many languages.

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 6th Edition

ODBC (Cont.)

Each database system supporting ODBC provides a "driver"

library that must be linked with the client program.

When client program makes an ODBC API call, the code in the

library communicates with the server to carry out the requested

action, and fetch results.

ODBC program first allocates an SQL environment, then a

database connection handle.

Opens database connection using SQLConnect(). Parameters for

SQLConnect:

connection handle,

the server to which to connect

the user identifier,

password

Must also specify types of arguments:

SQL_NTS denotes previous argument is a null-terminated string.

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 6th Edition

ODBC Code

int ODBCexample()

{

RETCODE error;

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 6th Edition

ODBC Code (Cont.)

Program sends SQL commands to database by using SQLExecDirect

Result tuples are fetched using SQLFetch()

SQLBindCol() binds C language variables to attributes of the query
result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

Arguments to SQLBindCol()

 ODBC stmt variable, attribute position in query result

 The type conversion from SQL to C.

 The address of the variable.

 For variable-length types like character arrays,

– The maximum length of the variable

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null
value

Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 6th Edition

ODBC Code (Cont.)

Main body of program

char deptname[80];

float salary;

int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)

from instructor

group by dept_name";

SQLAllocStmt(conn, &stmt);

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2);

while (SQLFetch(stmt) == SQL_SUCCESS) {

printf (" %s %g\n", deptname, salary);

}

}

SQLFreeStmt(stmt, SQL_DROP);

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 6th Edition

ODBC Prepared Statements

Prepared Statement

SQL statement prepared: compiled at the database

Can have placeholders: E.g. insert into account values(?,?,?)

Repeatedly executed with actual values for the placeholders

To prepare a statement

SQLPrepare(stmt, <SQL String>);

To bind parameters

SQLBindParameter(stmt, <parameter#>,

… type information and value omitted for simplicity..)

To execute the statement

retcode = SQLExecute(stmt);

To avoid SQL injection security risk, do not create SQL strings

directly using user input; instead use prepared statements to bind

user inputs

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 6th Edition

More ODBC Features

Metadata features

finding all the relations in the database and

finding the names and types of columns of a query result or a

relation in the database.

By default, each SQL statement is treated as a separate

transaction that is committed automatically.

Can turn off automatic commit on a connection

SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

Transactions must then be committed or rolled back explicitly by

SQLTransact(conn, SQL_COMMIT) or

SQLTransact(conn, SQL_ROLLBACK)

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 6th Edition

ODBC Conformance Levels

Conformance levels specify subsets of the functionality defined

by the standard.

Core

Level 1 requires support for metadata querying

Level 2 requires ability to send and retrieve arrays of

parameter values and more detailed catalog information.

SQL Call Level Interface (CLI) standard similar to ODBC

interface, but with some minor differences.

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 6th Edition

ADO.NET

API designed for Visual Basic .NET and C#, providing database access

facilities similar to JDBC/ODBC

Partial example of ADO.NET code in C#

using System, System.Data, System.Data.SqlClient;

SqlConnection conn = new SqlConnection(

“Data Source=<IPaddr>, Initial Catalog=<Catalog>”);

conn.Open();

SqlCommand cmd = new SqlCommand(“select * from students”,

conn);

SqlDataReader rdr = cmd.ExecuteReader();

while(rdr.Read()) {

Console.WriteLine(rdr[0], rdr[1]); /* Prints result attributes 1 & 2 */

}

rdr.Close(); conn.Close();

Can also access non-relational data sources such as

OLE-DB, XML data, Entity framework

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 6th Edition

Embedded SQL

The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, Java, and Cobol.

A language to which SQL queries are embedded is referred to as

a host language, and the SQL structures permitted in the host

language comprise embedded SQL.

The basic form of these languages follows that of the System R

embedding of SQL into PL/I.

EXEC SQL statement is used to identify embedded SQL request

to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding

uses # SQL { …. };)

©Silberschatz, Korth and Sudarshan5.25Database System Concepts - 6th Edition

Example Query

Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount.

©Silberschatz, Korth and Sudarshan5.26Database System Concepts - 6th Edition

Embedded SQL (Cont.)

The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

The fetch statement causes the values of one tuple in the query

result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.27Database System Concepts - 6th Edition

Updates Through Cursors

Can update tuples fetched by cursor by declaring that the cursor

is for update

declare c cursor for

select *

from instructor

where dept_name = ‘Music’

for update

To update tuple at the current location of cursor c

update instructor

set salary = salary + 100

where current of c

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 6th Edition

Procedural Constructs in SQL

©Silberschatz, Korth and Sudarshan5.29Database System Concepts - 6th Edition

Procedural Extensions and Stored Procedures

SQL provides a module language

Permits definition of procedures in SQL, with if-then-else

statements, for and while loops, etc.

Stored Procedures

Can store procedures in the database

then execute them using the call statement

permit external applications to operate on the database

without knowing about internal details

Object-oriented aspects of these features are covered in Chapter

22 (Object Based Databases)

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 6th Edition

Functions and Procedures

SQL:1999 supports functions and procedures

Functions/procedures can be written in SQL itself, or in an

external programming language.

Functions are particularly useful with specialized data types such

as images and geometric objects.

Example: functions to check if polygons overlap, or to

compare images for similarity.

Some database systems support table-valued functions, which

can return a relation as a result.

SQL:1999 also supports a rich set of imperative constructs, including

Loops, if-then-else, assignment

Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 6th Edition

SQL Functions

Define a function that, given the name of a department, returns

the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer

begin

declare d_count integer;

select count (*) into d_count

from instructor

where instructor.dept_name = dept_name

return d_count;

end

Find the department name and budget of all departments with

more that 12 instructors.

select dept_name, budget

from department

where dept_count (dept_name) > 1

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 6th Edition

Table Functions

SQL:2003 added functions that return a relation as a result

Example: Return all accounts owned by a given customer

create function instructors_of (dept_name char(20)

returns table (ID varchar(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

return table

(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructors_of.dept_name)

Usage

select *

from table (instructors_of (‘Music’))

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 6th Edition

SQL Procedures

The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

SQL:1999 allows more than one function/procedure of the same
name (called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 6th Edition

Procedural Constructs

Warning: most database systems implement their own variant of the
standard syntax below

read your system manual to see what works on your system

Compound statement: begin … end,

May contain multiple SQL statements between begin and end.

Local variables can be declared within a compound statements

Whileand repeat statements :

declare n integer default 0;

while n < 10 do

set n = n + 1

end while

repeat

set n = n – 1

until n = 0

end repeat

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 6th Edition

Procedural Constructs (Cont.)

For loop

Permits iteration over all results of a query

Example:

declare n integer default 0;

for r as

select budget from department

where dept_name = ‘Music’

do

set n = n - r.budget

end for

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 6th Edition

Procedural Constructs (cont.)

Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

Example procedure: registers student after ensuring classroom capacity

is not exceeded

Returns 0 on success and -1 if capacity is exceeded

See book for details

Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats

begin

…

.. signal out_of_classroom_seats

end

The handler here is exit -- causes enclosing begin..end to be exited

Other actions possible on exception

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 6th Edition

External Language Functions/Procedures

SQL:1999 permits the use of functions and procedures written in

other languages such as C or C++

Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))

returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 6th Edition

External Language Routines (Cont.)

Benefits of external language functions/procedures:

more efficient for many operations, and more expressive

power.

Drawbacks

Code to implement function may need to be loaded into

database system and executed in the database system’s

address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of

potentially worse performance.

Direct execution in the database system’s space is used when

efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 6th Edition

Security with External Language Routines

To deal with security problems

Use sandbox techniques

 that is use a safe language like Java, which cannot be

used to access/damage other parts of the database

code.

Or, run external language functions/procedures in a

separate process, with no access to the database process’

memory.

Parameters and results communicated via inter-process

communication

Both have performance overheads

Many database systems support both above approaches as

well as direct executing in database system address space.

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 6th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 6th Edition

Triggers

A trigger is a statement that is executed automatically by

the system as a side effect of a modification to the

database.

To design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be

executed.

Specify the actions to be taken when the trigger

executes.

Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by

most databases.

Syntax illustrated here may not work exactly on your

database system; check the system manuals

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 6th Edition

Trigger Example

E.g. time_slot_id is not a primary key of timeslot, so we cannot

create a foreign key constraint from section to timeslot.

Alternative: use triggers on section and timeslot to enforce integrity

constraints

create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row

when (nrow.time_slot_id not in (

select time_slot_id

from time_slot)) /* time_slot_id not present in time_slot */

begin

rollback

end;

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 6th Edition

Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot

referencing old row as orow

for each row

when (orow.time_slot_id not in (

select time_slot_id

from time_slot)

/* last tuple for time slot id deleted from time slot */

and orow.time_slot_id in (

select time_slot_id

from section)) /* and time_slot_id still referenced from section*/

begin

rollback

end;

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

Triggering event can be insert, delete or update

Triggers on update can be restricted to specific attributes

E.g., after update of takes on grade

Values of attributes before and after an update can be
referenced

referencing old row as : for deletes and updates

referencing new row as : for inserts and updates

Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 6th Edition

Trigger to Maintain credits_earned value

create trigger credits_earned after update of takes on

(grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)

begin atomic

update student

set tot_cred= tot_cred +

(select credits

from course

where course.course_id= nrow.course_id)

where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 6th Edition

Statement Level Triggers

Instead of executing a separate action for each affected

row, a single action can be executed for all rows affected by

a transaction

Use for each statement instead of for each row

Use referencing old table or referencing new

table to refer to temporary tables (called transition

tables) containing the affected rows

Can be more efficient when dealing with SQL

statements that update a large number of rows

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 6th Edition

When Not To Use Triggers

Triggers were used earlier for tasks such as

maintaining summary data (e.g., total salary of each department)

Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process

that applies the changes over to a replica

There are better ways of doing these now:

Databases today provide built in materialized view facilities to

maintain summary data

Databases provide built-in support for replication

Encapsulation facilities can be used instead of triggers in many cases

Define methods to update fields

Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 6th Edition

When Not To Use Triggers

Risk of unintended execution of triggers, for example, when

loading data from a backup copy

replicating updates at a remote site

Trigger execution can be disabled before such actions.

Other risks with triggers:

Error leading to failure of critical transactions that set off the

trigger

Cascading execution

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 6th Edition

Recursive Queries

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 6th Edition

Recursion in SQL

SQL:1999 permits recursive view definition

Example: find which courses are a prerequisite, whether

directly or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id

from prereq

union

select rec_prereq.course_id, prereq.prereq_id,

from rec_rereq, prereq

where rec_prereq.prereq_id = prereq.course_id

)

select ∗
from rec_prereq;

This example view, rec_prereq, is called the transitive closure

of the prereq relation

Note: 1st printing of 6th ed erroneously used c_prereq in place of

rec_prereq in some places

©Silberschatz, Korth and Sudarshan5.51Database System Concepts - 6th Edition

The Power of Recursion

Recursive views make it possible to write queries, such as

transitive closure queries, that cannot be written without recursion

or iteration.

Intuition: Without recursion, a non-recursive non-iterative

program can perform only a fixed number of joins of prereq

with itself

This can give only a fixed number of levels of managers

Given a fixed non-recursive query, we can construct a

database with a greater number of levels of prerequisites on

which the query will not work

Alternative: write a procedure to iterate as many times as

required

– See procedure findAllPrereqs in book

©Silberschatz, Korth and Sudarshan5.52Database System Concepts - 6th Edition

The Power of Recursion

Computing transitive closure using iteration, adding successive

tuples to rec_prereq

The next slide shows a prereq relation

Each step of the iterative process constructs an extended

version of rec_prereq from its recursive definition.

The final result is called the fixed point of the recursive view

definition.

Recursive views are required to be monotonic. That is, if we add

tuples to prereq the view rec_prereq contains all of the tuples it

contained before, plus possibly more

©Silberschatz, Korth and Sudarshan5.53Database System Concepts - 6th Edition

Example of Fixed-Point Computation

©Silberschatz, Korth and Sudarshan5.54Database System Concepts - 6th Edition

Advanced Aggregation Features

©Silberschatz, Korth and Sudarshan5.55Database System Concepts - 6th Edition

Ranking

Ranking is done in conjunction with an order by specification.

Suppose we are given a relation

student_grades(ID, GPA)

giving the grade-point average of each student

Find the rank of each student.

select ID, rank() over (order by GPA desc) as s_rank

from student_grades

An extra order by clause is needed to get them in sorted order

select ID, rank() over (order by GPA desc) as s_rank

from student_grades

order by s_rank

Ranking may leave gaps: e.g. if 2 students have the same top GPA,

both have rank 1, and the next rank is 3

dense_rank does not leave gaps, so next dense rank would be 2

©Silberschatz, Korth and Sudarshan5.56Database System Concepts - 6th Edition

Ranking

Ranking can be done using basic SQL aggregation, but

resultant query is very inefficient

select ID, (1 + (select count(*)

from student_grades B

where B.GPA > A.GPA)) as s_rank

from student_grades A

order by s_rank;

©Silberschatz, Korth and Sudarshan5.57Database System Concepts - 6th Edition

Ranking (Cont.)

Ranking can be done within partition of the data.

“Find the rank of students within each department.”

select ID, dept_name,

rank () over (partition by dept_name order by GPA desc)

as dept_rank

from dept_grades

order by dept_name, dept_rank;

Multiple rank clauses can occur in a single select clause.

Ranking is done after applying group by clause/aggregation

Can be used to find top-n results

More general than the limit n clause supported by many

databases, since it allows top-n within each partition

©Silberschatz, Korth and Sudarshan5.58Database System Concepts - 6th Edition

Ranking (Cont.)

Other ranking functions:

percent_rank (within partition, if partitioning is done)

cume_dist (cumulative distribution)

 fraction of tuples with preceding values

row_number (non-deterministic in presence of duplicates)

SQL:1999 permits the user to specify nulls first or nulls last

select ID,

rank () over (order by GPA desc nulls last) as s_rank

from student_grades

©Silberschatz, Korth and Sudarshan5.59Database System Concepts - 6th Edition

Ranking (Cont.)

For a given constant n, the ranking the function ntile(n) takes

the tuples in each partition in the specified order, and divides

them into n buckets with equal numbers of tuples.

E.g.,

select ID, ntile(4) over (order by GPA desc) as quartile

from student_grades;

©Silberschatz, Korth and Sudarshan5.60Database System Concepts - 6th Edition

Windowing

Used to smooth out random variations.

E.g., moving average: “Given sales values for each date, calculate
for each date the average of the sales on that day, the previous day,
and the next day”

Window specification in SQL:

Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

©Silberschatz, Korth and Sudarshan5.61Database System Concepts - 6th Edition

Windowing

Examples of other window specifications:

between rows unbounded preceding and current

rows unbounded preceding

range between 10 preceding and current row

All rows with values between current row value –10 to
current value

range interval 10 day preceding

Not including current row

©Silberschatz, Korth and Sudarshan5.62Database System Concepts - 6th Edition

Windowing (Cont.)

Can do windowing within partitions

E.g., Given a relation transaction (account_number, date_time,

value), where value is positive for a deposit and negative for a

withdrawal

“Find total balance of each account after each transaction

on the account”

select account_number, date_time,

sum (value) over

(partition by account_number

order by date_time

rows unbounded preceding)

as balance

from transaction

order by account_number, date_time

©Silberschatz, Korth and Sudarshan5.63Database System Concepts - 6th Edition

OLAP**

©Silberschatz, Korth and Sudarshan5.64Database System Concepts - 6th Edition

Data Analysis and OLAP

Online Analytical Processing (OLAP)

Interactive analysis of data, allowing data to be summarized and

viewed in different ways in an online fashion (with negligible

delay)

Data that can be modeled as dimension attributes and measure

attributes are called multidimensional data.

Measure attributes

measure some value

can be aggregated upon

e.g., the attribute number of the sales relation

Dimension attributes

define the dimensions on which measure attributes (or

aggregates thereof) are viewed

e.g., attributes item_name, color, and size of the sales relation

©Silberschatz, Korth and Sudarshan5.65Database System Concepts - 6th Edition

Example sales relation

...

...

...

...

...

...

...

...

©Silberschatz, Korth and Sudarshan5.66Database System Concepts - 6th Edition

Cross Tabulation of sales by item_name and color

The table above is an example of a cross-tabulation (cross-tab),

also referred to as a pivot-table.

Values for one of the dimension attributes form the row headers

Values for another dimension attribute form the column headers

Other dimension attributes are listed on top

Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

©Silberschatz, Korth and Sudarshan5.67Database System Concepts - 6th Edition

Data Cube

A data cube is a multidimensional generalization of a cross-tab

Can have n dimensions; we show 3 below

Cross-tabs can be used as views on a data cube

©Silberschatz, Korth and Sudarshan5.68Database System Concepts - 6th Edition

Hierarchies on Dimensions

Hierarchy on dimension attributes: lets dimensions to be viewed

at different levels of detail

E.g., the dimension DateTime can be used to aggregate by hour of

day, date, day of week, month, quarter or year

©Silberschatz, Korth and Sudarshan5.69Database System Concepts - 6th Edition

Cross Tabulation With Hierarchy

Cross-tabs can be easily extended to deal with hierarchies

⚫ Can drill down or roll up on a hierarchy

©Silberschatz, Korth and Sudarshan5.70Database System Concepts - 6th Edition

Relational Representation of Cross-tabs

Cross-tabs can be represented
as relations

⚫ We use the value all is used
to represent aggregates.

⚫ The SQL standard actually
uses null values in place of
all despite confusion with
regular null values.

©Silberschatz, Korth and Sudarshan5.71Database System Concepts - 6th Edition

Extended Aggregation to Support OLAP

The cube operation computes union of group by’s on every subset of the

specified attributes

Example relation for this section

sales(item_name, color, clothes_size, quantity)

E.g. consider the query

select item_name, color, size, sum(number)

from sales

group by cube(item_name, color, size)

This computes the union of eight different groupings of the sales relation:

{ (item_name, color, size), (item_name, color),

(item_name, size), (color, size),

(item_name), (color),

(size), () }

where () denotes an empty group by list.

For each grouping, the result contains the null value

for attributes not present in the grouping.

©Silberschatz, Korth and Sudarshan5.72Database System Concepts - 6th Edition

Online Analytical Processing Operations

Relational representation of cross-tab that we saw earlier, but with
null in place of all, can be computed by

select item_name, color, sum(number)
from sales
group by cube(item_name, color)

The function grouping() can be applied on an attribute

Returns 1 if the value is a null value representing all, and returns
0 in all other cases.

select item_name, color, size, sum(number),
grouping(item_name) as item_name_flag,
grouping(color) as color_flag,
grouping(size) as size_flag,

from sales
group by cube(item_name, color, size)

©Silberschatz, Korth and Sudarshan5.73Database System Concepts - 6th Edition

Online Analytical Processing Operations

Can use the function decode() in the select clause to replace
such nulls by a value such as all

E.g., replace item_name in first query by

decode(grouping(item_name), 1, ‘all’, item_name)

©Silberschatz, Korth and Sudarshan5.74Database System Concepts - 6th Edition

Extended Aggregation (Cont.)

The rollup construct generates union on every prefix of specified list
of attributes

E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name, color, size)

Generates union of four groupings:

{ (item_name, color, size), (item_name, color), (item_name), () }

Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

E.g., suppose table itemcategory(item_name, category) gives the
category of each item. Then

select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by item_name and by category.

©Silberschatz, Korth and Sudarshan5.75Database System Concepts - 6th Edition

Extended Aggregation (Cont.)

Multiple rollups and cubes can be used in a single group by clause

Each generates set of group by lists, cross product of sets gives

overall set of group by lists

E.g.,

select item_name, color, size, sum(number)

from sales

group by rollup(item_name), rollup(color, size)

generates the groupings

{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),

(color, size), (color), () }

©Silberschatz, Korth and Sudarshan5.76Database System Concepts - 6th Edition

Online Analytical Processing Operations

Pivoting: changing the dimensions used in a cross-tab is called

Slicing: creating a cross-tab for fixed values only

Sometimes called dicing, particularly when values for

multiple dimensions are fixed.

Rollup: moving from finer-granularity data to a coarser

granularity

Drill down: The opposite operation - that of moving from

coarser-granularity data to finer-granularity data

©Silberschatz, Korth and Sudarshan5.77Database System Concepts - 6th Edition

OLAP Implementation

The earliest OLAP systems used multidimensional arrays in

memory to store data cubes, and are referred to as

multidimensional OLAP (MOLAP) systems.

OLAP implementations using only relational database features are

called relational OLAP (ROLAP) systems

Hybrid systems, which store some summaries in memory and

store the base data and other summaries in a relational database,

are called hybrid OLAP (HOLAP) systems.

©Silberschatz, Korth and Sudarshan5.78Database System Concepts - 6th Edition

OLAP Implementation (Cont.)

Early OLAP systems precomputed all possible aggregates in order to
provide online response

Space and time requirements for doing so can be very high

2n combinations of group by

It suffices to precompute some aggregates, and compute others on
demand from one of the precomputed aggregates

Can compute aggregate on (item_name, color) from an
aggregate on (item_name, color, size)

– For all but a few “non-decomposable” aggregates such as median

– is cheaper than computing it from scratch

Several optimizations available for computing multiple aggregates

Can compute aggregate on (item_name, color) from an aggregate
on (item_name, color, size)

Can compute aggregates on (item_name, color, size),
(item_name, color) and (item_name) using a single sorting
of the base data

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan5.80Database System Concepts - 6th Edition

Figure 5.22

©Silberschatz, Korth and Sudarshan5.81Database System Concepts - 6th Edition

Figure 5.23

©Silberschatz, Korth and Sudarshan5.82Database System Concepts - 6th Edition

Figure 5.24

©Silberschatz, Korth and Sudarshan5.83Database System Concepts - 6th Edition

Another Recursion Example

Given relation

manager(employee_name, manager_name)

Find all employee-manager pairs, where the employee reports to the

manager directly or indirectly (that is manager’s manager, manager’s

manager’s manager, etc.)

with recursive empl (employee_name, manager_name) as (

select employee_name, manager_name

from manager

union

select manager.employee_name, empl.manager_name

from manager, empl

where manager.manager_name = empl.employe_name)

select *

from empl

This example view, empl, is the transitive closure of the manager

relation

©Silberschatz, Korth and Sudarshan5.84Database System Concepts - 6th Edition

Merge statement (now in Chapter 24)

Merge construct allows batch processing of updates.

Example: relation funds_received (account_number, amount) has

batch of deposits to be added to the proper account in the account

relation

merge into account as A

using (select *

from funds_received as F)

on (A.account_number = F.account_number)

when matched then

update set balance = balance + F.amount

